home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAASSSSDDDD0000((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD0000((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLASD0 - a divide and conquer approach, DLASD0 computes the singular
- value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with
- diagonal D and offdiagonal E, where M = N + SQRE
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, WORK,
- INFO )
-
- INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE
-
- INTEGER IWORK( * )
-
- DOUBLE PRECISION D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
- WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- Using a divide and conquer approach, DLASD0 computes the singular value
- decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with
- diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes
- orthogonal matrices U and VT such that B = U * S * VT. The singular
- values S are overwritten on D.
-
- A related subroutine, DLASDA, computes only the singular values, and
- optionally, the singular vectors in compact form.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- N (input) INTEGER
- On entry, the row dimension of the upper bidiagonal matrix. This
- is also the dimension of the main diagonal array D.
-
- SQRE (input) INTEGER
- Specifies the column dimension of the bidiagonal matrix. = 0: The
- bidiagonal matrix has column dimension M = N;
- = 1: The bidiagonal matrix has column dimension M = N+1;
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDD0000((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD0000((((3333SSSS))))
-
-
-
- D (input/output) DOUBLE PRECISION array, dimension (N)
- On entry D contains the main diagonal of the bidiagonal matrix.
- On exit D, if INFO = 0, contains its singular values.
-
- E (input) DOUBLE PRECISION array, dimension (M-1)
- Contains the subdiagonal entries of the bidiagonal matrix. On
- exit, E has been destroyed.
-
- U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
- On exit, U contains the left singular vectors.
-
- LDU (input) INTEGER
- On entry, leading dimension of U.
-
- VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
- On exit, VT' contains the right singular vectors.
-
- LDVT (input) INTEGER
- On entry, leading dimension of VT.
-
- SMLSIZ (input) INTEGER On entry, maximum size of the subproblems
- at the bottom of the computation tree.
-
- IWORK (workspace) INTEGER array.
- Dimension must be at least (8 * N)
-
- WORK (workspace) DOUBLE PRECISION array.
- Dimension must be at least (3 * M**2 + 2 * M)
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
- > 0: if INFO = 1, an singular value did not converge
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-